English上一篇下一篇PDF下载[1]罗锋,彭进湖,张忠祥,等.南边污水处置厂污泥厌氧发酵制取碳源和投加策略[J].中国给水排水,2022,38(3):1-6. LUO Feng,PENG Jin?hu,ZHANG Zhong-xiang,et al.Preparation of Carbon Source by Anaerobic Fermentation of Sludge in Wastewater Treatment Plant in Southern China and Its Dosing Strategy[J].China Water & Wastewater,2022,38(3):1-6.点击复制
(1. School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Dongguan Water Group Co. Ltd., Dongguan 523000, China)
In order to meet the increasing demand of the total nitrogen standard of effluent from wastewater treatment plant (WWTP), enhance the denitrification capacity of biochemical tank and reduce the dependence on the external carbon source, the influencing factors of carbon source preparation by anaerobic fermentation of excess sludge from a WWTP in Southern China and the ratio of reuse were investigated. The feasibility, sludge reduction and economic benefit were analyzed. When the initial MLSS was controlled at about 15 000 mg/L, the ORP was about -400 mV during anaerobic fermentation, which was beneficial to the preparation of carbon source. Anaerobic fermentation was carried out by replacing new sludge in proportion, and the replacement ratio was about 50% per day, in which sludge retention time was about 48 hours. 2.5% anaerobic fermentation sludge combined with 75 mg/L composite carbon source was added to the anoxic system to enhance the nitrogen removal capacity, and the total nitrogen, total phosphorus and heavy metal ions of sludge would not cause adverse effects on the biochemical system. Based on SRT, the sludge reduction rate of anaerobic fermentation was about 7%. Taking a WWTP with capacity of 10×104m3/d as an example, the adoption of anaerobic fermentation technology could save operating cost about 4.106 million yuan each year.
类似文献/References:
[1]徐志嫱,李瑶,周爱朝,等.污泥热水解进程中磷的释放纪律与影响身分[J].中国给水排水,2018,34(21):24.XU Zhi qiang,LI Yao,ZHOU Ai chao,et al.Phosphate Release and Influencing Factors Analysis during Sludge Thermal Hydrolysis[J].China Water & Wastewater,2018,34(3):24.[2]张彦平,呼瑞琪,李一兵,等.高铁酸盐氧化残剩污泥溶胞减量研究[J].中国给水排水,2020,36(15):59.ZHANG Yan-ping,HU Rui-qi,LI Yi-bing,et al.Lysis and Reduction of Excess Sludge by Ferrate Oxidation[J].China Water & Wastewater,2020,36(3):59.[3]胡德秀,张聪,张艳.超声强化污泥释磷和MAP法磷收受接管优化研究[J].中国给水排水,2020,36(15):65.HU De-xiu,ZHANG Cong,ZHANG Yan.Phosphorus Release from Sludge Enhanced by Ultrasound and Optimization of Phosphorus Recovery by Magnesium Ammonium Phosphate Method[J].China Water & Wastewater,2020,36(3):65.[4]晏习鹏,肖小兰,亓金鹏,等.中试厌氧膜生物反映器对残剩污泥的消化结果[J].中国给水排水,2020,36(19):1.YAN Xi-peng,XIAO Xiao-lan,QI Jin-peng,et al.Digestion of Excess Sludge in a Pilot Anaerobic Membrane Bioreactor[J].China Water & Wastewater,2020,36(3):1.[5]孙洋洋,张雨辰,徐苏云.分歧来历残剩污泥无机质赋存特点和厌氧消化潜能[J].中国给水排水,2021,37(11):17.SUN Yang-yang,ZHANG Yu-chen,XU Su-yun.Characteristics of Organic Matters in Excess Sewage Sludge from Different Sources and Their Anaerobic Digestion Potential[J].China Water & Wastewater,2021,37(3):17.[6]朱赵冉,黄显怀,唐玉朝,等.低速搅拌球磨破解残剩污泥高效释放碳源[J].中国给水排水,2021,37(13):1.ZHU Zhao-ran,HUANG Xian-huai,TANG Yu-chao,et al.High Efficient Release of Carbon Source from Excess Sludge Disintegrated by Low-speed Stirring and Ball-milling[J].China Water & Wastewater,2021,37(3):1.[7]赵博玮,牛宇锟,谢飞,等.残剩污泥碳化裂解液的资本化中试研究[J].中国给水排水,2021,37(19):1.ZHAO Bo-wei,NIU Yu-kun,XIE Fei,et al.Pilot-scale Study on Resource Recycling of Excess Sludge Carbonized Pyrolysis Liquid[J].China Water & Wastewater,2021,37(3):1.[8]窦川川,刘玉玲,赵鹏鹤,等.碱预处置对残剩污泥DOM的溶出特点和平行因子阐发[J].中国给水排水,2021,37(19):14.DOU Chuan-chuan,LIU Yu-ling,ZHAO Peng-he,et al.Effect of Alkaline Pretreatment on DOM Dissolution Characteristics of Excess Sludge and Parallel Factor Analysis[J].China Water & Wastewater,2021,37(3):14.[9]罗璐,施周,许仕荣,等.溶菌酶预处置对残剩污泥脱水机能的影响[J].中国给水排水,2022,38(3):87.LUOLu,SHIZhou,XUShi-rong,et al.Effect of Lysozyme Pretreatment on Dewatering Performance of Excess Activated Sludge[J].China Water & Wastewater,2022,38(3):87.[10]刘子娟,王寅义,徐肖甜,等.残剩污泥碱性发酵产酸和脱水机能研究[J].中国给水排水,2022,38(3):92.LIUZi-juan,WANG Yin-yi,XUXiao-tian,et al.Acid Production and Dewatering Performance of Excess Sludge with Alkaline Fermentation[J].China Water & Wastewater,2022,38(3):92.